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Abstract20

Reliable sensing of road conditions during flooding can facilitate safe and effi-21

cient emergency response, reduce vehicle-related fatalities, and enhance com-22

munity resilience. Existing situational awareness tools typically depend on23

limited data sources or simplified models, rendering them inadequate for sens-24

ing dynamically evolving roadway conditions. Consequently, roadway-related25

incidents are a leading cause of flood fatalities (40%-60%) in many developed26

countries. While an extensive network of physical sensors could improve situ-27

ational awareness, they are expensive to operate at scale. This study proposes28

an alternative—a framework that leverages existing data sources, including29

physical, social, and visual sensors and physics-based models, to sense road30

conditions. It uses source-specific data collection and processing, data fu-31

sion and augmentation, and network and spatial analyses workflows to infer32

flood impacts at link and network levels. A limited case study application of33

the framework in Houston, Texas, indicates that repurposing existing data34

sources can improve roadway situational awareness. This framework offers35

a paradigm shift for improving mobility-centric situational awareness using36

open-source tools, existing data sources, and modern algorithms, thus of-37

fering a practical solution for communities. The paper’s contributions are38

timely: it provides an equitable framework to improve situational awareness39

in an epoch of climate change and exacerbating urban flood risk.40
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1. Introduction43

Flooding poses a significant risk to urban mobility: While inundated44

roadways and overtopped bridges isolate communities and limit roadway mo-45

bility, the paucity of reliable real-time road condition data causes delays and46

detours, reduces emergency response efficiency, and poses safety risks [1–47

10]. Further, existing situational awareness tools are often limited in their48

ability to accurately sense dynamically evolving road conditions [11, 12],49

thus limiting communities’ ability to respond to flood events. Consequently,50

mobility-related incidents are linked to 40%-60% of flood fatalities in many51

developed economies [3–5, 13]. Although structural changes are necessary to52

reduce flood risk, improving situational awareness could, in the short term,53

enhance our ability to sense and respond to flooding, reduce flood casual-54

ties, and strengthen community resilience. Reliable situational awareness55

tools are especially essential considering climate-exacerbated flood risk to56

urban mobility [14, 15], aging or inadequate stormwater infrastructure [16],57

and the scale of emergency response in major urban centers (for example,58

first responders evacuated more than 122,300 people during Hurricane Har-59

vey [17]). Situational awareness is defined here as the ability to timely and60

accurately sense flood impacts on road transportation networks at the link61

and network levels.62

Most existing situational awareness tools for detecting flooded roads, or63

flooding in general, depend on a limited number of sources and consequently64

inherit their limitations, biases, and inaccuracies. For example, though phys-65

ical sensors [18–22] deployed along streets can detect road conditions reliably,66

deploying, maintaining, and securing sensors at scale is prohibitively expen-67

sive. Similarly, although social sensors (social media platforms [23] or custom68

crowdsourcing tools [24, 25]) can offer enhanced situational awareness, they69

are often replete with bias, misinformation, noise, or model errors [26–29]—70

thus limiting their application as the sole source of situational awareness data71

for emergency response applications. Further, studies [30–33] have also suc-72

cessfully used remote sensing techniques (satellites, UAVs, and other aerial73

platforms) to infer road or flood conditions. While capable of observing large74

areas, time delays due to satellite revisit times and unavailability of aerial75

platforms during inclement weather conditions, such as hurricanes, limit their76

application for emergency response applications requiring limited time lag.77

With recent advances in deep learning [34, 35], automated image processing78

models [36–38] can infer roadway flood conditions from traffic camera images;79
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however, camera data are often only limited to select watchpoints along ma-80

jor highways. Similarly, authoritative data from the Departments of Trans-81

portation [39, 40] are usually limited to major highways or arterial roads,82

limiting data availability for minor roads and residential streets. Recently,83

studies [41–44] have shown successful applications of machine learning models84

to predict flooding and roadway status. Often trained on limited historical or85

simulated data, these models have unknown reliability and generalizability86

for unseen future events. Moreover, the data-driven models inherit biases87

and uncertainties associated with the training data, limiting their applica-88

tion. Studies [45–50] have also used physics-based models to predict roadway89

conditions at select watchpoints as well as at watershed levels. While more90

reliable than surrogate models for unseen storms, physics-based models are91

computationally expensive to run in real-time, and simplifications such as92

the inability to model storm drainage networks could lead to model errors.93

Some studies have attempted to use precompiled maps [51] to overcome the94

computational burden of real-time models at the cost of accuracy. Similarly,95

studies have also attempted to correlate road conditions to nearby gages [52]96

or rainfall sensors [39] with varying levels of accuracy. However, such sim-97

plified or empirical methods are often insufficient for large-scale emergency98

response and high-risk applications. While these frameworks have advan-99

tages and work reliably for limited case study applications, they often fail100

to provide comprehensive mobility-centric situational awareness solutions at101

scale.102

The shortcomings of current mobility-centric situational awareness frame-103

works are primarily due to limited real-time data, as they rely solely on a104

small number of sources. An alternative is to fuse information from multiple105

sources using data fusion techniques. When data from compatible sources are106

combined, their collective observations can overcome their individual limita-107

tions. Concurrently, data fusion also engenders the challenge of combining108

information from disparate sources with varying spatial and temporal res-109

olution, reliability, robustness, and modality. Although real-time mobility-110

centric applications are limited, examples of data fusion-based methods are111

available for flood monitoring and hindcasting. For example, Wang et al. [53]112

used social media data with crowdsourcing data for flood monitoring. Rosser113

et al. [54] fused remote sensing data with social media data and topographical114

data for flood inundation mapping. Ahmad et al. [55] used remote sensing115

and social media to detect passable roads after floods. Frey et al. [56–58]116

used a digital elevation model and remote sensing images to identify traffica-117
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ble routes. Albuquerque et al. [59] used social media and authoritative data118

for filtering reliable social media messages. Bischke et al. [60] used social mul-119

timedia and satellite imagery for detecting flooding. Werneck et al. [61] pro-120

posed a graph-based fusion framework for flood detection from social media121

images. These methods showcase the application of the data fusion approach122

for situational awareness or hindcasting, albeit with a very limited number of123

data sources. Fusing observations from limited sources (especially leveraging124

social or remote sensors) might not effectively provide reliable situational125

awareness data for emergency response applications requiring high reliability126

and limited time lag. In summary, a comprehensive mobility-centric situa-127

tional awareness framework that can sense roadway conditions at link and128

network levels is still lacking in the literature. Such a framework should129

ideally (a) observe a majority of roads, including residential streets, with130

limited time lag through all stages of flooding; (b) yield reliable and accu-131

rate predictions devoid of spatial, temporal, and social bias or inequity; (c)132

be robust to provide reliable data even with failure of some dependent data133

sources; (d) quantify link- and network-level impacts on flooding to facilitate134

a holistic view of flooding; and (e) be accessible to a majority of communities.135

This study addresses this need for improved roadway sensing and proposes136

a mobility-centric real-time situational awareness framework leveraging data137

fusion.138

While a data fusion approach can potentially revolutionize situational139

awareness, a key challenge remains unaddressed—data sources directly re-140

porting flood road conditions are scarce. In contrast, urban centers are141

replete with data sources that may either directly or indirectly infer flood-142

ing or road conditions. Some common data sources include citizen service143

portals from the city or utility provider, water level sensors located along144

streams, and traffic cameras, to name a few. Often, these sources are not145

primarily designed for sensing flood conditions on roads, although they may146

provide indirect observations of flooding or flood impacts on roads. For ex-147

ample, live video data offers visual evidence of roadway flooding, and water148

level sensors provide insights on roads colocated with streams. The value of149

such data sources was evident during Hurricane Harvey in Houston: many150

people—including emergency responders—resorted to manually examining151

data sources to infer probable road conditions to overcome the dearth of152

reliable real-time road condition data [11]. While manual examination of153

multiple data sources provided temporary relief, they also could result in154

information scatter, cognitive overload, increased likelihood of misinterpre-155
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tation, and the risk of using outdated data. An alternative is to leverage156

observations from multiple public data sources in an automated data fusion157

framework to sense current flood conditions. Such a framework could sig-158

nificantly improve situational awareness: they can enhance data availability;159

reduce information scatter; improve accuracy, robustness, and reliability of160

road condition data; and reduce the cognitive overload of first responders.161

Moreover, such a data fusion-centric approach might be more affordable to162

communities than deploying, maintaining, and securing physical sensors at163

scale.164

This study addresses the need for reliable mobility-centric situational165

awareness and presents a new framework called Open Source Situational166

Awareness Framework for Mobility using Data Fusion (OpenSafe Fusion).167

OpenSafe Fusion leverages data collection and processing, data fusion and168

augmentation, and spatial and network analyses to infer link- and network-169

level impacts of flooding by fusing observations from real-time data sources170

that observed flooding or roadway conditions. Any new situational awareness171

framework should ideally address the needs of stakeholders; consequently, the172

design of this framework is informed by insights from extensive stakeholder173

interviews (n = 24) and needs assessment following the tenets of a user-174

centered design process [62], a detailed description of which is available in175

Panakkal et al. [11]. This paper primarily focuses on the methodological176

underpinning of the OpenSafe Fusion methodology and its components. The177

remainder of the paper is arranged in three sections. A brief overview of the178

OpenSafe Fusion methodology is provided in the next section, followed by a179

case study application of the framework in Houston, Texas. The final section180

presents key insights from the experiments in the context of mobility-centric181

situational awareness.182

2. Proposed Architecture and Methods183

OpenSafe Fusion (Fig. 1) is a modular framework composed of five steps:184

data acquisition and processing, data fusion, data augmentation, impact as-185

sessment, and communication. During the data acquisition step (Fig. 1a),186

real-time data from select sources are acquired, processed to infer road condi-187

tions, and geolocated. During the data fusion step (Fig. 1b), road conditions188

inferred from the selected sources in the data acquisition step are fused at189

the road link level to estimate road flood conditions while explicitly account-190

ing for the characteristics of the data sources. Similarly, during the optional191
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Figure 1: Overview of the OpenSafe Fusion methodology: (a) real-time observations from
diverse sources are collected and processed; (b) observations from sources are fused for
each road link in the study area to infer the roadway status; (c) data augmentation
techniques infer the conditions of roads for which direct observations are unavailable; (d)
real-time network analysis quantifies the network-level impacts of flooding; and finally
(e) observations and road condition data are communicated to stakeholders via a web
dashboard and REST API.

data augmentation step (Fig. 1c), observed roadways status in the current192

time step are used to infer the state of roads for which direct observations193

are unavailable. Next, the impact assessment step (Fig. 1d) estimates the194

network-level impacts of roadway flooding on access to select facilities. Fi-195

nally, the results are communicated to stakeholders using a web dashboard196

(Fig. 1e) and REST API (Fig. 1f).197

2.1. Data sources198

Before deploying the OpenSafe Fusion framework in a region, real-time199

data sources that can observe flooding or road conditions—either directly200

or indirectly—should be identified. Some example sources include author-201

itative sources (e.g., Department of Transportation alerts), social sensors202

6



(e.g., crowdsourcing, social media, and citizen service portals), physical sen-203

sors (e.g., traffic speed sensors and water level sensors), remote sensors (e.g.,204

UAVs, satellite imagery), and physics-based or hybrid models (e.g., flood205

alert systems built upon hydrologic and hydraulic models). Once data sources206

are identified, their historical performance and characteristics are studied.207

Some example data source characteristics include modality (text from Tweets208

vs. images from traffic cameras), accuracy, availability, and time lag. Char-209

acterization of data sources is necessary to fuse real-time multi-modal data210

while explicitly accounting for data type heterogeneity, spatial and tempo-211

ral resolution mismatch, and time lag. Once the data sources are identified212

and characterized, automated source-specific workflows are developed to ex-213

tract road condition data from the sources. These data sources and proposed214

data processing workflows are presented in Section 2.3 after introducing the215

methodological core of OpenSafe Fusion: the data fusion method.216

2.2. Data Fusion217

This section presents the methodology proposed to fuse observations from218

diverse sources and infer the current status of road links. Let the variable219 Xt represent the state of a road link at time t and x represent the specific220

value that Xt might assume at a time step. A street link could be either221

impassable (f) or open (o) (i.e., x ∈ {f, o}). p(Xt = f) or simply p(f) denotes222

the probability that the road link is impassable at a time step.223

Consider that time is discretized over a time step δt. The distribution of224

trajectories of road condition sampled over time t = 1, ..., T is P (X1, ...,XT ) or225

its abbreviated form P (X1∶T ). The state of the road at a time is not directly226

known (Xt is a hidden variable) but can be observed through sensors with227

varying characteristics, availability, and noise. U = {u1 ..., uk} is a set of k228

sensors available in the study area. A sensor in the context of OpenSafe229

Fusion is any real-time data source that observes flooding, flood impacts, or230

road conditions.231

As a road link evolves through states X1, ...,XT under the influence of232

external actors e1, ..., eT , the state of the link is observed by sensors in U as233

z1, ..., zT . Here, et represents the environmental factors ({a1, .., ap}) in the234

time interval between t − 1 and t (i.e., in the (t − 1, t] time window) that235

drive the transition of roadway condition from Xt−1 to Xt. These environ-236

mental factors are often hard to quantify as they include complex factors237

(rainfall, topography, and built environment) and their interactions at var-238

ious timescales. To elaborate, transition from Xt−1 to Xt is influenced by239
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Figure 2: Overview of the dynamic Bayes network for modeling roadway condition.

the actors at time (t − 1, t] (i.e., et; e.g., rainfall since t − 1), actions in the240

short-term (i.e., et−10∶t; e.g., delayed peak flow) and actions in the long-term241

(i.e., e1∶t; e.g., influence of soil moisture).242

Since the actors affecting the transition from Xt−1 to Xt are hard to char-243

acterize and the state itself is hidden, an observer is only left with imperfect244

observations (zt = {z1t , ..., zkt }) by sensors in U at time t to infer the cur-245

rent road link condition Xt. Here, z1t is the observation from sensor u1 at246

time t. Figure 2 shows a simplified representation of the transition of road247

conditions, external actors affecting the transition between time steps, and248

observations by the sensors at the end of each time step.249

OpenSafe Fusion uses Bayes’ theorem to fuse observations from diverse250

sources. Specifically, it uses the discrete form of the Bayes Filter [63] to sense251

current flood conditions from multi-sensory observations. The formulation252

presented here is adapted after Thrun et al. [63]. Following Bayes’ theorem,253

the probability of a road link assuming a state at time t (i.e., xt) given past254

observations (z1∶t) and external actions (e1∶t) is given as:255

p(xt#z1∶t, e1∶t) = p(zt#xt, z1∶t−1, e1∶t).p(xt#z1∶t−1, e1∶t)
p(zt#z1∶t−1, e1∶t) (1)

Equation 1 can be simplified using a normalizing constant η as:

p(xt#z1∶t, e1∶t) = η.p(zt#xt, z1∶t−1, e1∶t).p(xt#z1∶t−1, e1∶t) (2)

2.2.1. Prediction Step256

In Equation 2, p(xt#z1∶t−1, e1∶t) represents the Prediction step which (Eq. 3)
predicts the current road condition (xt) from historical records of external
actions (e1∶t) and sensor measurements (z1∶t−1). Note that the prediction step
happens after the external actions in time (1, t] (i.e., e1∶t) and before receiving
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the sensor measurements at time t (i.e., zt is not available).

pred(xt) = p(xt#z1∶t−1, e1∶t) (3)

The prediction stage can be modeled in its most complete form by em-
ploying a surrogate model (e.g., a neural network) that infers the current
condition from external actions and sensor data records. To model the intri-
cate relationships it attempts to capture, such a model requires substantial
historical data, which is often unavailable, necessitating a simpler formula-
tion for the prediction step. Following the chain rule, Equation 3 can be
expressed as:

pred(xt) = $ p(xt#xt−1, z1∶t−1, e1∶t).p(xt−1#z1∶t−1, e1∶t)dxt−1 (4)

Assuming that once the state xt−1 is observed, no additional data prior257

to the time step t − 1 is required to infer the road condition xt at t. To258

elaborate, if a road link is known to be flooded at time t−1, only information259

on the external actions acting on the system between t−1 and t is sufficient to260

predict the state of the road at t. Thus, Equation 4 can be further simplified261

as:262

p(xt#xt−1, z1∶t−1, e1∶t) = p(xt#xt−1, et) (5)

pred(xt) = $ p(xt#xt−1, et).p(xt−1#xt−2, et−1)dxt−1 (6)

pred(xt) = $ p(xt#xt−1, et).pred(xt−1)dxt−1 (7)

As previously stated, external actions in the present and previous time263

steps play an active part in the transition of flood conditions in the current264

time step. Neglecting external actors beyond the current time step may im-265

pair the Prediction step’s capacity to accurately capture the state transition266

of road links. The effects of such errors will be more prominent if limited267

sensor measurements are available at each time step to correct the predicted268

road condition. Thus, for regions with limited real-time data sources, it is269

crucial to model the Prediction step accurately without invoking the Markov270

assumption.271

Equation 6 expresses the Prediction step as a recursive update equation.272

p(xt#xt−1, et) can be modeled using a surrogate model that considers the road273
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condition at time step t−1 and external actors et to predict the road condition274

xt at time t.275

It is often impractical to identify the external factors that drive the com-
plex flood process, model their interactions, and sense them in real time. As
a result, external actors are not always observable. This necessitates further
simplification of Equation 6 as:

pred(xt) = $ p(xt#xt−1).p(xt−1#xt−2)dxt−1 (8)

pred(xt) = $ p(xt#xt−1).pred(xt−1)dxt−1 (9)

Equation 9 represents the simplest form of the prediction step. Here,276

a transition function is used to predict the next state of a road, given the277

current state of the road (i.e., p(xt#xt−1)). Please note that the selected time278

step will impact the transition function and the influence of environmental279

factors. Moreover, for a simple two state system (i.e., x ∈ {f, o}), a state280

transition matrix can be used to model the transition function [64].281

Finally, mathematical functions describing the Prediction step should282

ideally be learned from extensive historical data. In the absence of such283

observations, the function form of the Prediction step can be based on prior284

knowledge (i.e., expert judgment) for the initial deployment. With additional285

data available after each storm, such functions should be updated to reflect286

the most recent information.287

2.2.2. Measurement and Update Steps288

While the Prediction step predicts the current condition from past obser-
vations, the current state of the road is hidden and only observable through
imperfect sensors. In the Measurement Step, p(zt#xt, z1∶t−1, e1∶t) from Equa-
tion 2 is estimated. p(zt#xt, z1∶t−1, e1∶t) estimates the probability of observing
zt at time t given the road is at xt state, past sensor observations are z1∶t−1
and historical external actions are e1∶t. Since zt primarily depends on xt, it
is reasonable to believe that no prior measurements or external actions will
yield any additional insights if xt is known. Thus, Equation 2 reduces to
Equation 10.

p(xt#zt) = η#.p(zt#xt).pred(xt) (10)

Assuming that multiple sensors will report the road condition at time t, and289

the sensors independently observe flooding, p(xt#zt) can be rewritten as:290
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p(xt#zt) = η##. k%
i=1

p(zit #xt).pred(xt) (11)

Here, p(zit #xt) is the likelihood of observing a sensor measurement zit for291

sensor ui at time t give the state of the road xt. Similar to the Prediction292

step, surrogate functions can be developed to model p(zit #xt) either from his-293

torical data or expert judgement. Data sources in OpenSafe Fusion often294

observe flooding independently of other data sources. For example, traffic295

cameras sense flooding independently of physics-based flood models. How-296

ever, not all data sources observe flooding independently; dependency on297

other sources is common in social sensors, where people will report flooding298

based on data from other sources (e.g., traffic cameras). Sources with ex-299

tensive interdependencies might disproportionately affect model predictions300

if Eq. 11 is adopted. While the impacts of such interdependencies on model301

accuracy are generally limited (as they represent a confirming observation),302

with extensive historical data, better models capturing the p(xt#zt) can be303

developed that also consider interdependencies in the data sources.304

OpenSafe Fusion uses several data sources as sensors. The performance of305

the sensors and consequently p(zit #xt) vary both spatially and temporally. For306

example, observations from the flood model used in OpenSafe Mobility are307

more reliable near a bayou than in other areas. Similarly, flood models are less308

accurate for small floods (or in the early stages of the flood) than for severe309

floods (or in the later stages). Further, environmental and sociodemographic310

factors may influence sensor performance. For example, camera data are311

more reliable under sufficient illumination. Hence, automated flood detection312

from camera data might be more reliable during a bright day. Likewise, it is313

more likely to acquire better social media data for urban regions with more314

active users compared to sparsely populated regions. While quantifying the315

influence of different factors is difficult, it is necessary to reliably estimate316

current flood conditions from diverse data sources. Finally, observations from317

different data sources may be available at different rates; the OpenSafe Fusion318

uses the latest available data from the sources for each link for fusion. In319

scenarios with significant delay in receiving the data, OpenSafe Fusion reruns320

all affected timesteps for the reported road link. It is important to carefully321

choose the time step (δt) after considering data availability and frequency,322

accuracy, and computational resources.323
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2.3. Data Processing Workflows324

This subsection provides nine examples of data processing workflows for325

deriving input data to the fusion method modeled after the data available in326

Houston, TX. These workflows also serve as templates for transferring the327

framework to other study regions.328

2.3.1. Department of Transportation Alerts329

Departments of Transportation (DOT), such as the Texas Department of330

Transportation (TxDOT), operate traffic information systems (TIS) to alert331

road users on real-time road conditions. For example, DriveTexas [40] is an332

online traffic information system developed and operated by TxDOT to pro-333

vide real-time information on highway conditions in Texas. In DriveTexas,334

road conditions are reported by reliable sources such as law enforcement and335

are then verified by TxDOT employees or contractors (Fig 3a). The reported336

road conditions include the location of incidents such as accidents, construc-337

tion, damage, flooding, and snow (Fig 3b). Users can access roadway status338

using a variety of mediums, including web dashboards [40] and APIs [65].339

During operation, OpenSafe Fusion utilizes the API functionality offered340

by DOTs to collect real-time information at regular intervals. DOT road341

condition data are often geocoded and can be used directly in OpenSafe Fu-342

sion. Rarely, minor geometry differences in the reported road geometry may343

occur due to disagreements between the road databases used by OpenSafe344

Fusion and DOT. In such cases, mapping functions are used to locate roads345

from the OpenSafe Fusion road network that correspond to the roads in the346

official road condition reports. Example mapping functions might consider347

proximity, orientation, and road description to perform the mapping.348

2.3.2. Traffic Speed349

Real-time traffic speed data (e.g., Houston TranStar [39], Waze [24]) can350

be used to monitor highway performance. Typical traffic speeds could indi-351

cate the normal functioning of roads, and any abnormally low traffic speed352

could imply adverse or atypical conditions. OpenSafe Fusion leverages real-353

time traffic speed data to sense the opening of flooded roads. To elaborate,354

OpenSafe Fusion assumes that if the traffic speed is near normal (as defined355

using a threshold value or the posted speed limit), it is likely that the road356

is open to traffic—either partially or fully. OpenSafe Fusion does not use357

real-time speed data to identify flooded roads, as various factors, including358
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a. First responders
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b. Road condition reports

API

c. Potentially closed roads

Traffic Information System OpenSafe Fusion

Figure 3: OpenSafe Fusion uses API calls to collect road condition data from DOT alerts.
Typically, DOT alerts contain geolocated data on roadway conditions which can be used
directly in OpenSafe Fusion with minimal or no processing. (Maps © Mapbox)

flooded roads, traffic congestion, accidents, faulty equipment, stagnant traf-359

fic, or special events, could also cause speed reduction. Consequently, relying360

on traffic speed to detect flooded roads could result in erroneous detection.361

To demonstrate the OpenSafe Fusion methodology, Fig 4 shows real-time362

traffic speed data and OpenSafe Fusion road conditions for two time-steps—363

5 am and 7 pm. At 5 am, OpenSafe Fusion reports two flooded roads (c364

and d). While slow traffic speed at links a and b might suggest flooding,365

OpenSafe Fusion did not consider this observation in its calculation. At 7366

pm, the traffic speed at road links a, b, and d returned to normal, indicating367

a transition to normal condition. Accordingly, OpenSafe Fusion now reports368

links a, b, and d as likely open to traffic.369

2.3.3. Sensors370

Sensors deployed along streams and roads provide point estimates of wa-371

ter level at the deployed location. Many gages operated by public agencies372

such as the United States Geological Survey (USGS) are easily accessible via373

API or web dashboards. For sensors located along roads, the water level es-374

timates can be directly used to infer the road condition. For sensors situated375

away from roads, such as water level sensors deployed along rivers, sensing376

the state of nearby streets requires additional processing. Fig. 5 and Equa-377

tion 12 illustrates the methodology used by OpenSafe Fusion to convert point378

estimates at sensor locations to areal estimates to facilitate the identification379

of roadway conditions. The sensor data processing workflow presented here380

is inspired from bathtub flood models [66].381
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Figure 4: OpenSafe Fusion uses real-time highway speed data to sense the opening of
flooded roads. (Maps © Google LLC)

First, the digital surface model (DSM) for the region around the sensor382

location is collected. DSM is a digital representation of the terrain and383

contains elevation data of infrastructure elements such as roads and bridges.384

Water level data from the sensor is gathered during real-time operation and385

used to construct a constant water surface elevation raster (WSE) in the386

same datum as the DSM data. A new raster depth map is produced by387

subtracting the DSM from the WSE map; any places with positive depth388

values are likely to be flooded. Fig 5b shows an example illustration of the389

water depth map corresponding to water level 1 in Fig 5a.390

All cells with a positive depth value might not be flooded, as indicated391

by Fig 5c. Here, the presence of a levee protects the right bank from inun-392

dation. To account for such situations, OpenSafe Fusion only considers cells393

with positive water depths that are also contiguous with the location of the394

water level sensor. The proposed methodology yielded reliable results in our395

limited testing, especially for inferring the water depth for regions closer to396

the sensor location. As we move away from the sensor location, the ability of397

the model to predict water depth reduces. The reduction in predictive ability398

depends on factors such as water depth and topography. Consequently, this399

approximate method should only be applied to regions close to the sensor400
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location. Fig 5 uses the four distances Rr, Rl, Ru, and Rd to describe this401

region. Here, Rr and Rl are the offset towards the right and left banks, and402

Ru and Rd are the buffers towards the upstream and downstream sides of403

the sensor location. Historical flood inundation data or results from flood404

models can be used to estimate the optimal buffer distances for each gage405

location. This method is only used to detect flooded road (Dl
d > 0) and is406

not used to identify open roads (i.e., Dl
d = 0 is neglected).407

D
l
d = &d − d

l
s, if d − dls ∈ R+and l ∈ C∗and l ∈ Srlud

0, otherwise
(12)

where:408

l = a raster cell location defined by latitude and longitude
d = water level reading at the sensor
Dl

d = water depth at location l due to water level d
dls = elevation at location l from digital surface model
R+ = positive real number
C∗ = region contiguous with the sensor location
Srlud = region bounded by Rr, Rl, Ru, Rd distances from the sensor

2.3.4. Social Media409

Past studies have shown that social media analytics can detect flooding,410

track flood impacts, and sense community response to flooding [67–69]. Sev-411

eral automated workflows [68] exist in the literature to process social media412

data to sense urban flooding. Following existing literature, OpenSafe Fu-413

sion adopts a five-step workflow to glean information on flood conditions in414

the study area. First, OpenSafe Fusion collects relevant tweets from Twit-415

ter using Twitter API. Search queries include flood impacts keywords (e.g.,416

flood, road flooded), event-specific keywords (e.g., Harvey, Ike), location-417

specific keywords (e.g., Houston, Bayou City), and location constraints (e.g.,418

latitude and longitude of Houston). All collected tweets are then passed419

through a deep learning-based natural language processing classifier trained420

to filter relevant tweets. A relevant tweet is a text that contains information421

on flooding or flood impacts on communities suitable for informing situa-422

tional awareness. Filtered tweets are then passed through a deep learning423

model trained to identify entities. For this study, entities are primarily real-424

world geographical features (e.g., addresses, roads, places). Tweets with425
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Figure 5: OpenSafe Fusion methodology for identifying flooded regions from sensor data.

identified entities are then geolocated using geocoding techniques [70, 71].426

Finally, geocoded tweets are passed through another suite of models that427

extracts relevant attributes from the text. Relevant attributes include the428

intensity of flood impacts, time of flood report, and flood depth data. The429

extracted attributes are then assigned to the corresponding geolocated tweets430

and mapped on a web interface.431

Existing datasets and models are primarily suited to identify entities such432

as standardized street addresses. Consequently, current models have limited433

skill in extracting information related to roads. Limited skill in identifying434

flooded roads necessitates deploying approximate methods to sense road con-435

ditions from geolocated flood condition reports. For example, if the following436

conditions are met, OpenSafe Fusion will mark a road flooded: 1) the report437

is within a buffer distance of the road; 2) the roadway is at a lower elevation438

16



"2342 Rice Blvd. under
deep water"

Data from Twitter at 09:30, 09/08/21

x

Filtering

Data stream

Entity extraction

Trained DL model Flooded entity

Geocoding

Attribute extraction

Figure 6: OpenSafe Fusion methodology for collecting and processing social media data
to identify flooded roads. (Maps © Mapbox)

than the reported location; and 3) the flooding at the reported location is439

severe. Similarly, OpenSafe Fusion uses geolocated tweets to identify open440

roads if conditions 1 and 2 are met, and the tweet reports dry conditions at441

the location. While automated pipelines that use natural language processing442

are often noisy and prone to misinformation from malicious or misinformed443

actors, they serve as an inexpensive source with high availability in urban444

regions with high social media activity. The precision and dependability of445

flood mapping using social media can be improved by combining social media446

data with human-in-the-loop frameworks (see Section 2.3.9).447

2.3.5. Traffic Cameras448

Many urban areas have live traffic cameras along major highways and449

busy intersections. Live video or image feeds from these cameras enable450

traffic management agencies to monitor highway conditions. Such cameras451

are often in the public domain and can be accessed via a website or API.452

For example, Houston TranStar [39] operates and publishes data from more453

than 700 cameras in the Houston region. As observed during past events454

in Houston, manual inspection of live camera feeds can sense road condi-455

tions. While manual sensing of flooding from cameras might be accurate, it456

is often not practical or scalable. OpenSafe Fusion proposes a framework for457

automated sensing of flooded roads from camera images using deep learning458

models. A new dataset especially annotated to sense roadway flooding is459

developed and deep learning architectures are used to create a robust image460
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Figure 7: OpenSafe Fusion methodology for identifying flooded roads from traffic camera
data (image courtesy of Houston TranStar). (Maps © Mapbox)

classifier capable of predicting flood conditions from camera images. During461

real-time operation, live traffic camera data is collected at regular intervals462

(e.g., 10 min). The images are then processed by a deep learning-based image463

classifier trained to infer the flood condition captured in the image. Flood464

conditions from the images are then used to identify the status of roads linked465

to the traffic camera. For example, detecting a severe flood condition on the466

camera data in Fig. 7b might suggest flooding on I-10 at Houston Ave.467

2.3.6. Physics-Based Models468

Real-time analysis using physics-based flood models can enable reliable469

road condition sensing. For example, in regions with radar or rain gage470

coverage, the OpenSafe Mobility framework [72, 73] (Fig. 8) can provide471

real-time estimates of flood depth at roads. OpenSafe Mobility collects real-472

time rainfall radar data from reliable sources (Fig. 8a) such as NEXRAD473

at frequent intervals. The radar data is then processed to identify flood-474

inducing rainfall conditions. A flood-inducing rainfall [73, 74] is a rainfall475

event that could initiate flooding in the study region. Once the rainfall476

exceeds any flood-inducing rainfall thresholds, radar data at discrete time477

steps within a maximum considered duration (dmax) are concatenated to478
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Figure 8: OpenSafe Mobility methodology for identifying flooded roads.

generate a rainfall event. The maximum considered duration is selected after479

accounting for factors such as the model runtime, acceptable time lag, and480

available computational resources. The rainfall event is then simulated in a481

calibrated and validated flood model (Fig. 8b), which routes the rainfall over482

a digital representation of the study region and estimates the current water483

surface elevation (WSE) (Fig. 8c). The WSE map and roadway elevation484

from LiDAR data are then used to estimate the flood depth at road links485

(Fig. 8d). Flood depth and flow velocity at roads can then be used to assess486

the trafficability of a road link considering vehicle characteristics such as the487

safe wading height or stability requirements. Finally, the road conditions are488

communicated to stakeholders via a website or through REST API.489

2.3.7. Crowdsourcing490

Several recent studies [24, 25] have demonstrated the effectiveness of491

crowdsourcing as a medium for collecting real-time flood observations, par-492

ticularly during severe flood events in urban areas. For example, many ad493

hoc crowdsourcing platforms [25, 75] were active during Hurricane Harvey in494

Houston to address the unmet need for situational awareness data. Open-495

Safe Fusion leverages crowdsourcing as one of the data sources for three496

reasons: it provides an alternative data source in urban regions; it facilitates497

communication between users (e.g., first responders active in the field); and498

it enables stakeholders to overwrite inaccurate predictions from the model.499
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Figure 9 shows an example workflow adopted by OpenSafe Fusion to collect500

and process crowdsourcing data. To ensure data trustworthiness and prevent501

misinformation from malicious or misinformed actors, OpenSafe Fusion di-502

vides its user group into three different credibility categories: high, medium,503

and unknown. The high credibility group comprises known first respon-504

ders (e.g., police officers and FEMA search and rescue team) and officials505

from organizations responsible for managing flood response (e.g., Houston506

TranStar). The medium credibility group comprises registered and verified507

platform users (e.g., city officials and community stakeholders) with a track508

record of reliable reporting during past events. The unknown credibility509

group comprises all other users not covered in the first two categories. Dur-510

ing data fusion, observations from the high credibility group are assigned511

the highest importance, followed by the medium and unknown credibility512

groups. During operation, users can mark the current condition of roads513

or regions by drawing shapes on the map using interactive draw tools. Ex-514

ample geometry includes points (e.g., flooded intersections), lines (e.g., open515

roads), and polygons (e.g., flooded neighborhoods). Further, users could also516

provide auxiliary data describing each report. The auxiliary data could in-517

clude information such as flood conditions (flooded or open), flood depth,518

and comments from users. Finally, OpenSafe Fusion uses the user-generated519

shapes to infer road conditions.520

2.3.8. Citizen Service Portals521

Many urban regions are equipped with citizen service portals (e.g., the522

City of Houston 311 system [76]), where residents can report problems such523

as flooding. The citizen service portal reports are usually associated with524

the issue report time, closed time, a brief description of the problem, and525
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service portals. (Maps © ESRI)

the required service location. The service locations are most often encoded526

using a standard street address. Comparing past reports with flood hindcast527

inundation map indicate that the flooding was often localized to the adjacent528

streets, and the encoded residential property was not flooded at any point529

during the storm. For example, Figure 10 compares CoH 311 flood reports530

to an inundation map for Hurricane Harvey. Here, many reported parcel lo-531

cations were often not flooded, but the adjacent roads were flooded primarily532

due to their lower elevation compared to the adjoining parcels.533

Figure 10 illustrates OpenSafe Fusion methodology for identifying flooded534

roads from citizen service portal reports. OpenSafe Fusion marks all streets535

within a buffer distance (e.g., points a, b, c) of a flood report flooded. To536

acknowledge uncertainty, OpenSafe Fusion assigns a confidence value to these537

observations. For example, the probability of a road link flooding given a538

flood observation within a predefined buffer distance of 100 m is 85 percent.539

Historical flood reports and hindcast flood maps can be used to determine the540

buffer distance and the corresponding confidence value. While flood sensing541

using citizen service requests lacks specificity, the reports in the presence542

of observations from other sources might provide better sensing of flooded543

entities in a data fusion framework.544

2.3.9. Human-in-the-Loop545

Real-time automated data processing for sensing, mapping, and tracking546

floods to guide emergency response decision-making is a high-risk application.547

Any mistakes in model prediction will expose first responders and evacuees548

to possible safety risks and cause delays and detours that limit emergency549
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response efficiency. In the long term, model errors will impact stakeholder550

trust in the framework leading to reduced use and continued mistrust. The551

unproven generalizability of machine learning and automated models—often552

trained on limited historical data—on unseen new events in high-risk scenar-553

ios necessitates substantial safety measures to limit risk to stakeholders. In554

the short term, while visible disclaimers and acknowledgment of uncertainty555

in model predictions might improve stakeholder trust, they might increase556

the cognitive overload of first responders in stressful conditions.557

To partially address the need to ensure prediction quality, OpenSafe Fu-558

sion adopts a human-in-the-loop strategy (Fig. 11). Here, a group of trained559

human agents monitors the performance of different data processing work-560

flows. The OpenSafe Fusion framework assigns a confidence score to ob-561

servations from data processing workflows to facilitate review prioritization.562

The confidence score ranges from 0 to 1, with higher values indicating more563

reliable predictions. Three methodologies are used by OpenSafe Fusion to as-564

sign confidence scores. First, physics-based constraints imposed by the study565

region’s topography are employed to detect potentially inaccurate observa-566

tions (see Sec. 2.4 for more details). Consider two adjacent and connected567

roads on sloping terrain. If the road at a higher elevation is observed flooded,568

the road at a lower elevation is most likely be flooded. If observations from569

data sources contradict physical constraints imposed by terrain, OpenSafe570

Fusion will automatically assign low confidence scores for the observations571

and tag the observation for review. Second, performance metrics inherent572

to mathematical models are used to assign confidence scores. Example met-573

rics include model accuracy or F1-score for classification models (for deep574

learning framework used to identify flooded roads from live camera images)575

and RMSE or MAE for models estimating water depth. Third, the historical576

performance of the data processing workflows (e.g., flood models are more ac-577

curate near bayous compared to regions away from bayous) is used to assign578

confidence scores. In summary, the assigned confidence score depends on the579

expected model performance considering environmental, technical, and other580

factors influencing model predictions. To further facilitate review prioritiza-581

tion, high-impact observations are identified by considering both confidence582

scores and the population density of the report location.583

Reviewers can rectify any inaccurate predictions by using the crowdsourc-584

ing capabilities offered by OpenSafe Fusion. Additionally, human oversight585

can monitor the model’s performance in real-time and disable or modify586

the confidence of data processing workflows whose accuracy is subpar. It is587
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Figure 11: Conceptual human-in-the-loop framework for enhancing the accuracy of Open-
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crucial to highlight that OpenSafe Fusion already considers the accuracy of588

observations during the fusion process (see Sec. 2.2). The human-in-the-loop589

strategy provides an additional opportunity to augment existing data for590

better predictions. Further, the human-in-the-loop component is intended591

to be operated by emergency response managers and coordinators at com-592

mand and control centers and not by field personnel to prevent cognitive593

overload. Finally, the human-in-the-loop is optional; OpenSafe Fusion can594

sense current conditions without human supervision.595

2.4. Data Augmentation596

Direct flood observations may be sparse. Depending only on sparse ob-597

servations may limit the efficacy of OpenSafe Fusion. A possible strategy to598

augment data availability is to leverage existing observations in the context599

of the region’s topography to infer the status of roads with no direct road600

condition data. Figure 12 illustrates some example scenarios. In scenario s-1,601

road link a is observed flooded while conditions of roads b and c are unknown.602

Given the topography (mean elevation and slope) of the connected roads, link603

b is likely to be inundated as link a is flooded (one-step logical deduction).604

While link c lacks observations for its surrounding roads, once the state of605

link b is inferred, the possible state of link c can be deducted (two-step logi-606

cal deduction). Similarly, iterative logical reasoning can be used to infer the607
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states of additional road links, frequently at the expense of accuracy. It is608

ideal to limit data augmentation to only one step to ensure accuracy.609
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Figure 12: Example data augmentation scenarios for select roadway profiles.

Using logical deduction is not always possible for all road links. Consider610

scenario s-8; though link a is flooded, the status of links b and c cannot be611

reliably inferred due to the presence of a ridge. Similarly, in s-3, the status of612

links a and b can only be reliably estimated if significant flooding is reported613

at link c (to account for any localized flooding of link c). Further, data614

augmentation via deduction could occasionally lead to contradictions. For615

example, in s-6, link b is both flooded (as determined by the condition of link616

a) and open (based on link c). This contradiction could imply the failure of617

logical deduction for link b or point to inaccuracy in existing observations for618

either link a or b. OpenSafe Fusion will tag these roads for further review619

by a human agent. The data augmentation methodology is summarized in620

Equation 13. It is critical that the data augmentation approach presented621

here is not employed for scenarios involving long road links or roads in flat622

terrain. Additionally, a road is only deemed open if its full stretch is dry;623
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otherwise, errors could occur in instances such as s-5. Finally, while DSM624

data are used for inferring road conditions from sensor data (Section 2.3.3)625

and for data augmentation, the data processing workflows, input data needs,626

and application criteria differ (see Equations 12 and 13).627

C
k(R, δL, δD) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
likely flooded, if R+% ∉ {o} &#R+% ∈ f # > 0 &R−% ∉ {o}
likely open, if R+% ∉ {f} &#R+% ∈ o# > 0
unknown, otherwise

(13)
where:628

Ck = condition of the road link kR = a set of all links connected to the link k. The links must have an
elevation difference of at least δD and a maximum length of δL.R+% = a set of links at a higher elevation than the link k and sloping towards
the link k. R+% ∈R.R−% = a set of links with lower elevation and sloping away from the link k. R−% ∈R.

f = a set of all roads flooded in the current time step.
o = a set of all opened roads in the current time step.

2.5. Network Analysis629

Information on flooded roadways alone does not provide a comprehensive630

view of flood impacts. Factors such as network topology and the location631

of facilities could influence network robustness (defined here as the ability632

to maintain connectivity between communities and critical facilities). Con-633

sequently, quantifying the network-level impacts of flooding via real-time634

network analysis is essential to provide a holistic view of flood impacts to635

support decision-making and to prioritize emergency response.636

OpenSafe Fusion represents the topology of a road network as graph G =637 (V,E). Here, V is a set of nodes modeling points of interest, such as access638

locations or roadway intersections, and E is a set of road links connecting639

nodes. For a specific critical facility group k (e.g., all hospitals), baseline640

connection between every node in the network and the nearest facility is641

assessed. Dn
x→k denotes the shortest distance (measured in route length) in642

the original road network between a node x and the nearest facility in k643

(e.g., the nearest hospital). During operation, OpenSafe Fusion identifies644
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impassable links (vft ) and inundated nodes (eft ) at every time step. The645

flooded entities are then removed to create an updated road network G
f
t =646 (Vt,Et), where Vt = (V − vft ) and Et = (E − eft ) at time t. The shortest647

distance (Dt
x→k) between node x to the nearest facility in k at time t is648

then estimated. Further, the connectivity loss (CLt
x→k) ratio [77], defined as649

1−Dn
x→k,Dt

x→k for facility k and node x at time t, is utilized to quantify flood650

impacts on access to the facility group k. CLt
x→k ratio varies between 0 (no651

impact of flooding on the network access) and 1 (complete loss of access).652

Finally, the node-level results can be aggregated at a geographical unit level,653

such as Census Tracts, to visualize the spatial distribution of flood impacts654

on access to each facility type. Connectivity loss maps can be generated for655

various critical facilities (e.g., fire stations, pharmacies, and dialysis centers)656

to enhance situational awareness and aid decision-making.657

2.6. Publishing658

Stakeholders have access to four categories of data through the OpenSafe659

Fusion framework: observations from data sources, road condition data af-660

ter data fusion, road condition data after data augmentation, and network-661

level flooding impacts. Observations from individual data sources enable662

stakeholders to verify OpenSafe Fusion results. Road condition data can be663

used for routing. Network-level flood impacts help identify isolated neigh-664

borhoods, prioritize emergency response, and support decision-making. The665

OpenSafe Fusion results could be published via web-based tools built follow-666

ing the tenets of user-centered design [11] to address the needs and prefer-667

ences of stakeholders. Further, OpenSafe Fusion results should also be made668

available via REST API to facilitate interoperability with existing situational669

awareness and decision-making tools.670

3. Case Study Evaluation671

This section presents results from case study experiments designed to672

evaluate the OpenSafe Fusion framework for its strengths and limitations.673

A limited case study deployment of the framework is developed for Hous-674

ton, Texas. Data sources in the study region are analyzed, and OpenSafe675

Fusion workflows are created. The OpenSafe Fusion framework is evaluated676

by reenacting Hurricane Harvey (2017). OpenSafe Fusion model predictions677

are compared to ground observations during enactment to quantify model678

performance. The following subsections describe the experiments in detail.679
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3.1. Study Area680

Houston, Texas, (Fig 13) is the fourth most populous city in the United681

States. Houston is prone to recurring urban flooding due to several factors,682

including its location in the hurricane-prone Gulf of Mexico, flat topography683

with few relief features, urban sprawl, lack of zoning laws, limited stormwater684

drainage capacity, and soil conditions [78]. High flood hazard was evident685

during recent storm events such as Memorial Day Flood (2015), Tax Day686

Flood (2016), Memorial Day Flood (2016), Hurricane Harvey (2017), Trop-687

ical Storm Imelda (2019), and Tropical Storm Beta (2020). Dong et al. [79]688

demonstrated that even minor flooding in Houston could trigger network-689

wide catastrophic capacity reduction due to compound failures. While flood-690

ing causes network failures, its impacts are exacerbated by the limited in-691

formation on road conditions during a flood event. Flooding and a lack of692

situational awareness reduce safety and efficiency during emergency response693

and mobility during flooding. For example, 21 of the 57 drowning fatalities694

during Hurricane Harvey in Houston are linked to vehicle use [80].695

While flood mitigation studies are required to reduce Houston’s flood haz-696

ard, increased availability of situational awareness data can improve roadway697

safety and emergency response efficiency in Houston. Although Houston has698

several real-time data sources, they are not organized in a unified framework699

to enhance situational awareness. This study evaluates the OpenSafe Fu-700

sion framework’s capacity to monitor flood impacts on roads by leveraging701

data sources varying in data types, accuracy, and reliability. Any improve-702

ment in situational awareness could help responders identify flooded roads703

and affected communities improving the safety and efficiency of emergency704

response. Recurring flooding and the availability of real-time data sources705

make Houston an ideal testbed for OpenSafe Fusion.706

3.2. Hurricane Harvey707

Hurricane Harvey (2017) is reenacted in OpenSafe Fusion to critically708

assess its effectiveness. Hurricane Harvey (25 August to 2 September 2017)709

brought record-breaking rainfall to Harris County. The Houston metro area710

saw rainfall amounts totaling 36-48 inches. As a result of this slow-moving711

storm, more than 122,000 people were rescued by emergency responders [17].712

Additionally, roadways throughout Houston were flooded, including major713

highways such as I-10, I-45, and US-59. NOAA estimates damages from Har-714

vey at around $125 billion, making it the second costliest tropical cyclone in715
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Figure 13: Houston, Texas is used to demonstrate OpenSafe Fusion. (Maps © ESRI)

28



the United States, next to Hurricane Katrina (2005). The lack of real-time in-716

formation about roadway conditions was especially detrimental to emergency717

response efficiency and safety. For example, two ad hoc projects [25, 75] im-718

plemented by community members to share roadway status had more than719

a million map views. Experiences during Hurricane Harvey further highlight720

the need for reliable mobility-centric situational awareness tools in Houston.721

3.3. Data Sources and Data Processing Workflows722

This study identifies eight public data sources that observe floods in real723

time, either directly or indirectly. The identified data sources are: (1) Texas724

Department of Transportation DriveTexas [40]; (2) Houston 311 database725

[76]; (3) OpenSafe Mobility [73]; (4) U-Flood crowdsourcing [25]; (5) Gage726

data from USGS [81]; (6) Houston TranStar traffic camera network [39]; (7)727

Real-time traffic speed data from Houston TranStar [39], and (8) Twitter728

data [23, 82]. A majority of these data sources were active during Hurri-729

cane Harvey. An exception is the OpenSafe Mobility framework, which was730

created in response to the need for better mobility-centric situational aware-731

ness tools. It is included here to demonstrate its capability and compare it to732

other data sources. A summary of the characteristics of different data sources733

selected for this case study application is provided in Table 1. Screenshots734

from select data sources used in this study are shown in Fig 14.735

After identifying the data sources, automated source-specific data pro-736

cessing procedures are developed for each data source. These data processing737

algorithms use a variety of approaches, including deep learning and spatial738

analysis, to determine present flood conditions and, consequently, flood im-739

pacts on roads. The remainder of this subsection presents an overview of the740

data sources and data processing workflows.741
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a. OpenSafe Mobility website

c. CoH 311 Citizen Service Portal

b. Houston TranStar website

d. Gage data from HCFCD

Figure 14: Screenshots from select data sources used in this study. (Images courtesy of
© Houston TranStar, City of Houston, Harris County Flood Control District, Mapbox)
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3.3.1. Texas Department of Transportation DriveTexas742

In Houston, the TxDOT DriveTexas website provides real-time informa-743

tion on road conditions via the DriveTexas website [83] and through API [65].744

Historical road closure data from DriveTexas was collected for Hurricane745

Harvey and used in this study. A closer examination of TxDOT data reveals746

that all roads marked closed due to flooding are not flooded. Many roads,747

such as Interstate-610 loop around Houston, were partially open but marked748

closed to the public. Further, the DriveTexas platform only reports road749

conditions for TxDOT-maintained roads. This limits the data availability to750

major roads such as Interstates, US and State Highways, and Fram-to- and751

Ranch-to-Market roads. Non-TxDOT maintained roads include roads main-752

tained by the city or county, including frontage roads and several arterial,753

collector and local streets. Thus DriveTexas will not report the road condi-754

tions of several roads essential for urban mobility. TxDOT DriveTexas API755

provides georeferenced road condition data. While OpenSafe Fusion uses756

OpenStreetMap road data, DriveTexas uses a different road dataset, thus757

necessitating a mapping function. This study maps DriveTexas condition758

data to OpenSafe Fusion data by matching location (within a 30m margin),759

road name, and orientation. In limited testing, this mapping logic identified760

the correct mapping in most cases.761

3.3.2. Crowdsourcing762

During Hurricane Harvey, multiple citizen-led crowdsourcing tools were763

deployed to address the unmet need for situational awareness data. Of the764

ad hoc tools, U-Flood [25] was focused on real-time information on flooded765

streets. U-Flood enabled the public to share information on flooded roads766

by marking roadway status on a web dashboard built using Mapbox and767

OpenStreetMap. During its operation, U-Flood saw more than 1 million768

map loads. User-generated content from U-Flood during Hurricane Harvey769

is used here to model crowdsourcing data. A closer look at the data reveals770

two significant findings. First, data on local roads and residential streets are771

overrepresented, complementing sources that primarily report on the status772

of main highways. Second, while many individuals report flooded roads,773

the number of reports indicating the transition from flooded to open state is774

rare. Hence, flood reports quickly become untrustworthy in dynamic flooding775

scenarios where road conditions rapidly evolve.776

Past studies have also highlighted that social sensors, such as crowd-777

sourcing data, are prone to misinformation due to malicious or misinformed778
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actors. For example, Sebastian et al. [78] observed the presence of fake flood779

reports in social sensors during Hurricane Harvey. Similarly, Praharaj et780

al. [84] reported that only 71.7% of the crowdsourced Waze flood incident781

data was trustworthy in a Norfolk, Virginia case study. Thus, additional782

measures such as verifying crowdsourcing observations using a human-in-783

the-loop strategy and dividing user groups into trust categories might help784

improve the reliability of crowdsourcing data.785

3.3.3. Traffic Speed Data786

The Anonymous Wireless Address Matching (AWAM) system of Houston787

TranStar [39] employs multiple roadside AWAM readers. These readers sense788

the MAC address from Bluetooth-enabled devices such as cellular phones,789

mobile GPS systems, and in-vehicle navigation systems as they pass the790

reader station. The report times of a device at successive AWAM readers791

are used to estimate the roadway segment’s average travel time and speed.792

The Houston TranStar Speed Map archive was used to acquire historical793

traffic data for this study. Houston TranStar has maintained a database of794

15-min average speeds for 485 freeway links in Houston since January 2009.795

Houston TranStar also provides API access to the traffic speed data for real-796

time applications.797

3.3.4. Sensors798

Houston is amongst the most extensively gaged region in the US, with799

more than 50 gages in the study region. The USGS and the Harris County800

Flood Control District (HCFCD) are the primary operators of these gages.801

USGS offers API access to real-time and historical data, whereas HCFCD802

data is only available through a web dashboard, necessitating web scraping.803

Data from 40 USGS-operated gages were used in this investigation due to804

their ease of access. Following Section 2.3.3, historical gage data for selected805

gages are collected and processed to estimate flood extents. Flood extents806

are then used to estimate water depth at roads; roads with a depth of greater807

than 50 cm are considered flooded in this study.808

3.3.5. Citizen Service Portals809

This study uses historical reports from the City of Houston (CoH) 311810

citizen service portal to identify flooded regions. Flood reports from Hur-811

ricane Harvey are collected and geolocated. As described in Section 2.3.8,812

flood reports are encoded using the standard street address in CoH 311 data,813
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thus preventing the accurate localization of the reported condition. At each814

time step, all roads located within a buffer of 30 m (100 ft) of an active flood815

report are considered flooded in this study.816

3.3.6. OpenSafe Mobility817

OpenSafe Mobility [73] is a mobility-centric situational awareness system818

that uses real-time radar data and a physics-based flood model to identify819

flooded roads. A version of the OpenSafe Mobility framework has been oper-820

ational since September 2021 for the Brays Bayou Watershed area in Hous-821

ton, Texas. For this study, OpenSafe Mobility is expanded to include other822

watersheds in the Houston region. The newly considered regions include a)823

Greens and Hunting Bayou Watersheds; b) Sims and Vince Bayou Water-824

sheds; c) White Oak Bayou Watershed; and d) Buffalo Bayou Watershed.825

New physics-based flood models are developed and calibrated for each region826

using historical rainfall from Tax Day Flood (2016). Together the five models827

(one pre-existing and four newly developed models) cover most of the study828

area, thereby significantly improving the data availability. Historical rainfall829

radar data are used in this study to reenact model outputs for Hurricane830

Harvey.831

3.3.7. Traffic Cameras832

Houston TranStar [39] operates more than 700 live traffic cameras. An833

automated deep learning model that can sense road conditions from traffic834

cameras can significantly improve data availability, especially for major road-835

ways. Existing labeled image datasets are either limited in size or unsuitable836

for inferring road conditions from low-resolution traffic cameras. The lack of837

relevant annotated data necessitated the development of an image classifier838

from scratch. This study collected and labeled 2300 images related to road-839

way flood conditions. Flooded images are collected from various sources,840

including traffic camera images, Flickr, Bing, Google search, Twitter and841

others. The collected images are then manually inspected to filter images842

featuring roads—either flooded or open. The shortlisted images are then843

annotated using Supervise.ly annotation platform. Two classes are consid-844

ered while annotating images. The considered classes are a) roads either not845

flooded or with minor flood and passable to most vehicles and b) flooded846

roads that could pose unsafe road conditions. The annotated images are847

then manually cross-checked to ensure quality. The images are then used to848

train deep-learning-based image classifiers using transfer learning. The best849
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among the trained models (based on ResNet-34 [85]) can detect open and850

impassable roads using traffic camera data with 83% accuracy. For this case851

study, historical traffic camera data are collected for the study region. Due852

to the delay in data collection and the absence of archived data, data from all853

Houston TranStar cameras through Hurricane Harvey are not available. The854

limited images collected (n=15) are used here to demonstrate the application855

of automated deep learning workflow to sense flooding on roads.856

3.3.8. Social Media857

Despite recent advances in annotated datasets [86–88] and reliable geocod-858

ing tools (e.g., Google Geocoding API), limited testing during this study re-859

veals that more research is required to enable automated identification and860

mapping of flooded roads and entities from tweets. Specifically, adding so-861

cial media to OpenSafe Fusion did not significantly improve its accuracy but862

introduced noise to observations due to the lack of specificity in observations863

derived from tweets. To elaborate, existing annotated datasets [86–88] can864

identify informative tweets, classify relevant tweets into preidentified human-865

itarian categories, and estimate infrastructure damage severity from tweets.866

However, the datasets cannot estimate flood depth or severity from tweets.867

Thus, new datasets that can estimate flood depth or severity from tweets are868

necessary. Further, existing annotated datasets for geographic feature ex-869

traction (and geocoding tools) focus on standard street addresses and place870

names, thus, failing to identify roads as entities reliably. Hence, an entity871

extraction dataset that can identify roads and other geographic features are872

necessary. Finally, existing annotated datasets focus on either classification873

or entity extraction and are not suited for mapping the identified flood im-874

pacts to the affected entity. To elaborate, consider the tweet, “Brompton St.875

South of Holcombe Blvd. is Flooded.” While processing this tweet, an entity876

extractor can identify two entities: Brompton St. and Holcombe Blvd. A877

tweet classifier can identify that the tweet is related to flooding. However,878

models trained on existing datasets might not help identify the flooded road879

section from the two identified entities. Thus, a new joint entity and relation880

extraction dataset that maps the flood condition to entities is required to881

facilitate an accurate mapping of flood impacts. Such a dataset should map882

flood conditions to entities (e.g., entity::Brompton St.—relation::attribute—883

condition::Flooded) and also help identify the affected portion of the entity884

(e.g., entity::Brompton St.—relation::South of—entity::Holcombe Blvd.). In885

summary, a new dataset that can estimate flood depth or severity, identify886
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roads and other entities, and map the relation between entities and flood887

severity are necessary for leveraging social media data. Since OpenSafe Fu-888

sion is intended for emergency response applications, it was decided not to889

leverage social media data in this case study and initiate the development of890

datasets that can accurately identify flooded roads from tweets.891

3.4. Validation Results892

This section reenacts Hurricane Harvey in OpenSafe Fusion to critically893

evaluate its performance. The main stages of OpenSafe Fusion are illustrated894

in Figure 15. First, the OpenSafe Fusion model is activated when flood-895

inducing conditions are detected in the study area. Once activated, OpenSafe896

Fusion uses the road transportation network of the study region to begin897

analysis. The road transportation network used in this example is extracted898

from OpenStreetMap and contains more than 62,000 road links. All major899

highways and arterial roads are covered, while some residential streets are not900

considered for this case study. In the beginning, all road links are assigned901

an initial probability of flooding. In this example, the initial probability of902

flooding is set at 50% to encode the model’s lack of knowledge about the903

initial state of the roads. Once initialized, OpenSafe Fusion will collect,904

process, and fuse data at regular intervals. The time interval between runs is905

set to one hour for this demonstration. For a real-time application, shorter906

time steps could be used to ensure the recency of model predictions.907

During a new time step, previous states of the road, past observations,908

and external actors can be used to predict the state of the road link in909

the next time step. Figure 16 shows the average transition probability for910

roads in Houston during Halloween Day Flood (2015), Memorial Day flood911

(2015), and Tax Day Flood (2016). Here, OpenSafe Fusion road network912

and physics-based flood models are used to track link states and estimate the913

state transition for each time step (Fig 16). In all three cases, the transition914

probability of an open road remaining open (P (Xt+1 = Open#Xt = Open)) in915

the next time step (1 hour) is 0.99. The transition probability of flooded916

roads remaining flooded (P (Xt+1 = flooded#Xt = flooded)) hovers between917

0.90 and 0.99 (mean transition probability is 0.97 for all events). While some918

fluctuations can be observed for transition probability for flooded to flooded919

transitions in the early stages of flooding, the value quickly converges to920

0.97. Insights from the three past events indicate that the Prediction step921

can be approximately modeled as a Markov Process, especially for Hurricane922

Harvey, as it was a slow-moving flood event. This study uses two Prediction923
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Figure 15: Prediction, measurement, and update steps for a road link in OpenSafe Fu-
sion. The model is initialized at time step T1 with an initial probability of the road link
flooding set at 50%, encoding the lack of information on roadway status. At T2, the
model maintains the initial belief since no observation was received. After obtaining a
flood observation from the OpenSafe Mobility flood model, the model believes the link
may be flooded at step T3. OpenSafe Fusion sees typical traffic speeds at the link at T4,
and it now updates its belief to a likely open road. At T5, OpenSafe Fusion receives more
evidence from a traffic camera that the road is open, leading to an updated belief that the
link is probably open. (Images courtesy of © Houston TranStar, Google LLC, Mapbox)

models (Table 2): P1 and P2. A road link is initialized with the P1 model as924

it holds the assigned initial probability of flooding. Once the link is observed,925

OpenSafe Fusion switches the prediction model to P2. With each time step,926

Prediction model P2 will move the state of the road closer to the open state.927

Next, observations from data sources are collected and processed using928

the data processing workflows described above. Only the Prediction step929

is executed if no observations are available during a time step (see time930

step T2 in Fig 15). If observations are available, data fusion is initiated931

using the formulation presented in Equation 11. Equation 11 disregards data932

source interdependencies, overemphasizing simultaneous observations from933

interdependent sources. In this initial study, sufficient historical data was934

unavailable to model and study the interdependencies among data sources935

and their impacts on data fusion accuracy. Future research should investigate936

interdependencies among data sources and model them if it improves model937

accuracy. For this case study, four sources (OpenSafe Mobility, Sensors,938

Traffic Camera, and Citizen Portals) independently observe flooding, while939

three sources (UFlood, TxDOT, and Twitter) might have dependencies on940

other sources. Consider, for example, a TxDOT employee reporting flooding941

37



Figure 16: Figures showing the evolution of flood impacts on roads during three recent
floods in the study region. Similarity can be observed in the distribution of flooded du-
ration and the temporal evolution of flood impacts on roads (i.e., the number of flooded
roads). More importantly, consistent transition probability between flooding states ob-
served in the modeled flood events indicates that a Markov model can be used to model
the Prediction step.
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Table 2: Model parameters for OpenSafe Fusion Hurricane Harvey case study. Only
OpenSafe Mobility and Traffic Camera reports both open and flooded status. While
Traffic Speed data only reports open status, the remaining sources only observe flooding.

Model Model ID Description

Transition Model P1 P (Xt+1 = f %Xt = f) = 0.99 ; P (Xt+1 = o%Xt = o) = 0.99
P2 P (Xt+1 = f %Xt = f) = 0.97 ; P (Xt+1 = o%Xt = o) = 0.99

OpenSafe Mobility OSM-1 P (z = o%X = o) = 0.90
P (z = f %X = f) = 1&(1 + e−c1∗(wd−c2)); c2=2, c1=2

Traffic Camera CAM-1 P (z = f %X = f) = 0.83 ; P (z = o%X = o) = 0.83
Traffic Speed SPEED-1 P (z = f %X = f) = 0.95; P (z = o%X = o) = 0.95
TxDOT TXDOT-1 P (z = f %X = f) = 0.95; P (z = o%X = o) = 0.95
UFlood UFLOOD-1 P (z = f %X = f) = 0.70; P (z = o%X = o) = 0.70
Citizen Portal COH-1 P (z = f %X = f) = 0.85; P (z = o%X = o) = 0.85
Sensors USGS-1 P (z = f %X = f) = 0.85; P (z = o%X = o) = 0.85
Twitter TW-0 —

after observing a flooded road from a traffic camera.942

Table 2 reports p(z#x) (see Equation 11) for the considered data sources.943

These models are based on historical data (for Citizen Portals and Sensors),944

model performance (for camera data), insights from similar studies [84](for945

U-Flood), design considerations (for TxDOT), or a preliminary informed946

assumption (for OpenSafe Mobility). For OpenSafe Mobility, the sigmoid947

function with two parameters is used to model p(z = f #x = f). Leveraging948

the sigmoid function enables OpenSafe Fusion to dynamically change model949

confidence based on the predicted flood depth (wd in feet) at roads. Further,950

the sigmoid formulation also facilitates road-link-specific flood threshold se-951

lection to consider potential ponding effects due to numerical errors. After952

measurement and update, OpenSafe Fusion pauses until the next time step953

is initiated. The process of prediction, measurement, and update continues954

with each time step until the stopping criteria is reached (e.g., OpenSafe955

Fusion detects no flooded road in the study area).956

Figure 17 shows the spatial distribution of road condition observations957

from select sources and OpenSafe Fusion. OpenSafe Mobility, U-Flood, and958

TxDOT are the three sources that provided the majority of flood observa-959

tions. While TxDOT and traffic speed observations are primarily for major960

39



highways, other sources also offer data on minor streets, thus addressing the961

need for detecting local road conditions. The reports from CoH 311 data are962

mainly focused on residential streets, whereas data from gages is centered963

close to bayous. Since U-Flood was an ad hoc situational awareness tool de-964

ployed during Hurricane Harvey, the data is only available starting August965

31, 2017. Contrasting OpenSafe Fusion data availability with individual966

sources indicates that it successfully improved data availability throughout967

the event, even for minor roads—thus achieving one of the main goals of968

OpenSafe Fusion. Better data availability can translate to better situational969

awareness and improved roadway safety.970

The effectiveness of data fusion in achieving just situational awareness and971

overcoming data inequities depends primarily on the availability of reliable972

observations from multiple data sources. Fig. 17 indicates that OpenSafe973

Fusion observations are available throughout urban Houston, while other974

sources exhibit clustering around select neighborhoods (U-Flood; Fig. 17c)975

or sparse availability (Fig. 17b, e-g) outside major highways or bayous. While976

fusion can help reduce situational awareness data inequity, it cannot elim-977

inate them entirely (data-rich regions will always have better situational978

awareness). However, any reduction in situational awareness bias will pro-979

mote equitable emergency response. With only U-Flood reports, responders980

might prioritize the observed areas, leading to unjust resource allocation and981

reduced emergency response efficiency in other communities. In contrast,982

OpenSafe Fusion enables better sensing for all regions, thus promoting just983

resource allocation and safer and efficient emergency response navigation.984

Finally, better characterization of data sources and enhancing the accuracy985

of OpenSafe Fusion workflows could also enable the framework to offer just986

situational awareness.987

Figure 18 evaluates OpenSafe Fusion performance using ground truth988

data collected from images showing road conditions (both flooded and open).989

These images are collected from diverse sources, including TranStar, Twit-990

ter, and ESRI [89]. The impacted roads are located, and water depth over991

roads are estimated by contrasting collected images with terrain data from992

Google Map. Additionally, this study only considers pictures whose time of993

capture is known. TranStar camera data are used to increase the validation994

data availability; consequently, OpenSafe Fusion model results are generated995

without considering the traffic camera data source. For each observation,996

flood depth obtained from the image is compared to the OpenSafe Fusion997

predicted probability of flooding (Fig 18). Next, OpenSafe Fusion model per-998
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Figure 17: Spatial distribution of data availability from various sources and OpenSafe
Fusion during Hurricane Harvey. All roads with observations are marked using black
lines. For OpenSafe Mobility, roads without flood depth data can be considered open.

formance is quantified using the following five metrics: AUC (0.84), Weighted999

F1-Score (0.87), Balanced accuracy (0.88), Weighted Precision (0.88), and1000

Weighted Recall (0.875). For developing these metrics, roads with a proba-1001

bility of flooding higher than 0.5 are classified as flooded. Further, Figure 181002

also reports the Confusion Matrix and ROC curve. The findings show that1003

in 87 percent of cases, OpenSafe Fusion can detect the state of roads accu-1004

rately. OpenSafe Fusion, in particular, has a low false negative rate (1,14 or1005

7.14%; Fig 18). For situational awareness, a low false negative rate is vital1006

since incorrectly designating roads open can pose safety risks and result in1007

detours and delays.1008

A closer examination of wrongly predicted roads indicates that lack of1009

real-time observations and terrain with a predisposition for ponding are the1010

two main reasons for incorrect classification. A significant source of data for1011

OpenSafe Fusion is OpenSafe Mobility. OpenSafe Mobility’s flood models1012

are currently unable to simulate stormwater networks; as a result, low-lying1013

areas that are predominantly drained by the stormwater network will be1014

misclassified as flooded. Such regions are easily discernible from the digital1015

terrain model. It is possible to ignore OpenSafe Mobility observations from1016
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Figure 18: Validation of OpenSafe Fusion using geolocated images during Hurricane Har-
vey.

these regions or establish a higher bar for declaring a road to be flooded.1017

Ablation studies (Fig. 19) are performed to examine OpenSafe Fusion1018

further. Specifically, six experiments are run to offer insights into the per-1019

formance, data availability, accuracy, and robustness of OpenSafe Fusion.1020

In each experiment, one data source is held back and used as the “ground1021

truth,” while the remaining data sources are used to run OpenSafe Fusion.1022

Next, OpenSafe Fusion predictions are then compared to the held-back data1023

set, and performance metrics (AUC and Weighted F1) are estimated for each1024

time step. While extensive validation studies are essential before adopting1025

OpenSafe Fusion, the ablation study presented here offers initial insights into1026

the characteristics of the OpenSafe Fusion framework. Figure 19 reports the1027

temporal distribution of data availability and model performance for each1028

scenario. With the exception of OpenSafe Mobility, OpenSafe Fusion out-1029

performs all other data sources in terms of data availability. Out of the1030

network’s 62,000 roadways, OpenSafe Fusion continuously monitors around1031

37,000 of them. Most highways without observations are found near the1032

periphery of Houston (Fig.17).1033

Further, caution should be exercised when interpreting temporal varia-1034

tion of AUC and F1 scores. While estimating these measures, the held-back1035

data source is considered the ground truth, which often is not true. For data1036

sources that use physical sensors (cameras, speed data, and gages), Open-1037
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Figure 19: Results from ablation studies. Comparison of data availability (top) and tem-
poral variation in F1 and AUC scores (bottom) between individual data sources and
OpenSafe Fusion (OSF).
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Safe fusions predictions show good temporal performance. For other sources1038

(TxDOT, CoH 311), OpenSafe Fusion performance is low during the initial1039

phases of flooding. On closer examination, some inherent characteristics of1040

these data sources might have contributed to the low OpenSafe Fusion model1041

performance. To elaborate, all TxDOT flood reports are not flooded. Entire1042

stretches of highways are often marked flooded proactively due to partial1043

closure of a link or flooding of access roads. In some cases, traversable roads1044

are marked flooded to caution drivers about the presence of water. Similarly,1045

for COH-311 data, many initial reports might be related to nuisance flood-1046

ing. Ablation studies indicate that, for the selected case study, (a) OpenSafe1047

Fusion observes more road links than all sources except OpenSafe Mobility.1048

It also highlights OpenSafe Fusions ability to observe road status during the1049

initial stages of flooding; (b) OpenSafe Fusion provides acceptable accuracy1050

when compared to other sources, particularly considering physical sensors;1051

and (c) OpenSafe Fusion exhibits robustness by accurately monitoring roads1052

even if a specific data source becomes unavailable (a common occurrence1053

during major flood events).1054

Finally, Fig. 20a shows the predicted roadway status on 28 August 20171055

at 5 AM. From the figure, it is evident that a majority of roads in the1056

urban centers of Houston are observed. Moreover, the unobserved roads are1057

primarily located in the suburban regions—primarily because of the limited1058

data generation from this region. Deploying additional data in the suburban1059

regions could further enhance data availability. Similarly, Fig. 20b shows the1060

network-level impact of flooding on hospital access. Specifically, it identifies1061

regions with significant loss of connectivity to hospitals; such regions are more1062

vulnerable due to the lack of hospital access. OpenSafe Fusion results are1063

finally communicated via a web dashboard and REST API. OpenSafe Fusion1064

and the accompanying web tool are designed after extensive user feedback1065

following the tenets of user-centered design. For additional details, please1066

refer to Panakkal et al. [11].1067

Completeness of OpenSafe Fusion predictions can be assessed through1068

four key dimensions: availability, timeliness, certainty, and accuracy. Avail-1069

ability, measured as the percentage of road links observed, provides insight1070

into spatial data availability (Figs. 17 and 19). In this case study, OpenSafe1071

Fusion typically observed 60% of roads, except when OpenSafe Mobility data1072

was not included (Fig. 19; Parts a-d and e-f). Further, Fig. 20 indicates that1073

urban Houston has more complete observations for flooded roads than sub-1074

urban areas in the periphery. Timeliness, measured as the time elapsed since1075

44



the last observation from data sources for each road link, can identify regions1076

with potentially outdated data. However, timeliness was not examined in this1077

case study as archived data was used, and the time of data reporting was1078

unavailable. Certainty, gauged through the predicted probabilities (Fig. 20),1079

offers stakeholders a sense of OpenSafe Fusion’s confidence in the estimated1080

roadway status. For instance, OpenSafe Fusion is more confident in its as-1081

sessment when it estimates a 98% probability of flooding than 60% for a link.1082

Real-time accuracy can be calculated by comparing OpenSafe Fusion predic-1083

tions (such as in ablation studies) to a reliable, independent source uniformly1084

distributed through the study region. Ideally, the independent source should1085

be selected such that excluding it from the data fusion process should not1086

diminish the overall performance and data availability of OpenSafe Fusion.1087

Finally, while ablation and validation studies offer insights on model perfor-1088

mance, a comprehensive assessment of OpenSafe Fusion performance is still1089

lacking; especially, a detailed comparison study with other tools and frame-1090

works under diverse conditions is required. Ideally, OpenSafe Fusion should1091

be evaluated holistically, considering model performance on five dimensions:1092

availability, timeliness, uncertainty, fairness [90], and accuracy.1093

4. Discussions and Conclusions1094

This paper presents the methodological underpinning of the OpenSafe Fu-1095

sion framework. OpenSafe Fusion addresses a key impediment to improving1096

situational awareness—the lack of reliable real-time data on road conditions1097

during flooding—and offers a real-time mobility-centric situational aware-1098

ness framework. While additional research is required, the presented case1099

study show that fusing multi-modal observations from existing data sources1100

can significantly improve our ability to sense flood impacts at the link and1101

network levels in real time. Specifically, (a) this study demonstrated that1102

carefully designed source-specific workflows considering data source charac-1103

teristics enable the extraction of road condition data from diverse sources,1104

even sources that do not directly observe flooded roads—thus significantly1105

increasing data availability; (b) this study also addressed the methodological1106

challenges in fusing observations from sources diverse in characteristics and1107

reliability to estimate the probability of roadway flooding. The presented1108

link-level data fusion approach is adaptable, modular, and efficient and can1109

effectively model the spatiotemporal variation in source characteristics; (c)1110

this study illustrated that a data fusion-based approach can offer a real-time1111
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Figure 20: OpenSafe Fusion predicted roadway status (a) and connectivity loss (b) to
hospitals at a time step during Hurricane Harvey.

situational awareness framework capable of monitoring road conditions of1112

a majority of roadways and yield comprehensive and credible estimates of1113

flood impacts at the road link and network levels. Moreover, such a data1114

fusion-centric approach also has the potential to be more robust and eq-1115

46



uitable; finally, (d) the study offers tools, methods, and insights to enable1116

real-time data processing, data fusion, data augmentation, and network anal-1117

ysis. Communities can tailor the framework to their region and available data1118

sources to enhance roadway situational awareness—thus promoting commu-1119

nity resilience.1120

OpenSafe Fusion advances the current state-of-the-art in mobility-centric1121

flood situational awareness. Specifically, it is the first open-source framework1122

designed following the tenets of the user-centered design process [11] and ad-1123

hering to responsible design principles [91–95] that offer interpretable and1124

grounded real-time probabilistic estimates of flood impacts on road trans-1125

portation infrastructure. OpenSafe Fusion framework can significantly im-1126

prove data availability and accuracy compared to existing situational aware-1127

ness models depending on limited data sources (e.g., physical sensors, physics-1128

based models, alerts). Compared to machine learning methods, OpenSafe1129

Fusion offers interpretable, transparent, and grounded predictions; for each1130

road link, users can identify the real-time observations used by OpenSafe Fu-1131

sion to make predictions. Machine learning and physics-based models often1132

remain static in their initial configuration and parameters, thereby failing1133

to adapt to the changing conditions (e.g., new pumps, terrain changes, new1134

detention basins), resulting in diminishing performance, which could often go1135

unnoticed until significant errors occur. OpenSafe Fusion, on the other hand,1136

will constantly adapt to changing ground conditions as it primarily leverages1137

ground observation; in addition, the degrading performance of any source-1138

specific workflow is easier to notice in the context of other observations.1139

OpenSafe Fusion can promote situational awareness data equity by combin-1140

ing observations from multiple reliable urban sources. Compared to existing1141

data fusion-based situational awareness tools, OpenSafe Fusion stands apart1142

in its ability to leverage diverse urban sources that directly or indirectly1143

observe roadway status. Finally, the OpenSafe Fusion is human-centered,1144

contestable, and tenable to human oversight, thus promoting user trust, ad-1145

hering to responsible design principles, and offering guardrails against signif-1146

icant model errors.1147

While the limited case study presented here precludes generalization,1148

the presented proof-of-concept alludes to several advantages of the proposed1149

framework. First, by leveraging existing data sources, communities could1150

improve situational awareness without deploying and maintaining physical1151

sensors at scale. Repurposing existing sources leveraging open-source tools1152

is especially advantageous to communities without significant resources. Sec-1153
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ond, as demonstrated in the case study and ablation experiments, OpenSafe1154

Fusion can improve data availability—spatially (throughout the watershed1155

for both pluvial and fluvial floods) and temporally (through all stages of1156

flooding). The improvement in data availability is especially prominent for1157

regions with multiple data sources. Enhanced spatial and temporal data1158

availability could translate to enhanced safety and efficiency of emergency1159

response. Third, based on the limited case study presented here and in the1160

context of situational awareness tools used in Houston, OpenSafe Fusion is1161

robust and fault-tolerant as it uses multiple data sources. While sensor er-1162

rors or unavailability of data sources could reduce the model performance,1163

OpenSafe Fusion might still provide reliable results if other sources observe1164

flooding. Deploying replicas of OpenSafe Fusion on multiple computers that1165

are not co-located can ensure the availability of OpenSafe Fusion during1166

power outages that frequently accompany flooding. Fourth, OpenSafe Fusion1167

can produce reliable results by leveraging data from multiple data sources.1168

The reliability of OpenSafe Fusion will depend on several factors, including1169

data availability and the accuracy of data collection, processing, fusion, and1170

augmentation workflows. Moreover, understanding the data characteristics1171

(e.g., accuracy, bias) and factors influencing them under diverse conditions is1172

essential for effectively fusing observations. Fifth, OpenSafe Fusion can help1173

reduce inequities in situational awareness data availability. Many frameworks1174

rely on limited data sources and, consequently, carry biases in the availability1175

and accuracy of the relying sources. For example, social sensors might be1176

concentrated near urban regions, and physical sensors are more affordable for1177

affluent communities. Inequities in data sources could translate to inequities1178

in situational awareness. By combining diverse sources and leveraging data1179

augmentation, OpenSafe Fusion might be able to reduce inequity. Although1180

OpenSafe Fusion might help ameliorate inequity in situational awareness1181

data availability and accuracy, it cannot eliminate it—model results might1182

be more accurate in regions with reliable and abundant data than in regions1183

with sparse or unreliable data.1184

The advantages of OpenSafe Fusion should be considered in the context of1185

its limitations. First, OpenSafe Fusion requires reliable data sources; limited,1186

incomplete, or biased data will affect model performance. Second, OpenSafe1187

Fusion used the discrete formulation of the Bayes Filter to fuse observations1188

from sources. Consequently, the likelihoods, prior, and posterior are all dis-1189

crete, and the model produces a deterministic estimate for the probability of1190

a road link flooding. Additional data fusion strategies could be adopted to1191
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characterize the probability of roadway closure and associated uncertainties1192

in the continuous domain. Third, a Markov model is sufficient for modeling1193

OpenSafe Fusion’s prediction step in Houston since reliable data is available1194

at regular intervals. A Markov-based prediction step might not be appropri-1195

ate for applications in data-scarce regions. It might be beneficial to develop1196

generative or time series models that can predict the potential state of the1197

system (and the uncertainty bounds) over multiple time steps without fre-1198

quent observations. Fourth, since sufficient historical data was unavailable to1199

learn interdependencies, the data fusion model adopted here neglected the de-1200

pendencies between sources. Neglecting data source interdependencies may1201

result in errors, and once data is available, more refined fusion models that1202

can account for sensor interdependencies can be developed. Fifth, exhaus-1203

tive testing and validation studies are required to validate OpenSafe Fusion1204

and its components before a widespread deployment. Ideally, the OpenSafe1205

Fusion framework should be deployed, and model performance should be1206

validated over diverse storm types, including flash floods, compound floods,1207

severe storms, and multi-peak events. Additionally, the framework’s transfer-1208

ability and scalability should be assessed by implementing it in communities1209

of various sizes, ranging from megacities to small towns. Sixth, it might1210

be challenging for communities without sufficient resources to develop, de-1211

ploy, and maintain OpenSafe Fusion. To facilitate faster adoption and ap-1212

plication, the authors envision national agencies (e.g., FEMA) or non-profit1213

organizations developing, validating, maintaining, and updating OpenSafe1214

Fusion components and making them available to communities through API1215

calls and easily usable modular tools. A service-based approach might allow1216

communities with limited resources to leverage state-of-the-art situational1217

awareness tools and overcome technological and financial accessibility and af-1218

fordability barriers—thus promoting social equity and community resilience.1219

Finally, this study used distance-based metrics to measure network-level flood1220

impacts; future implementations could also use real-time traffic speed data1221

to estimate travel time-based metrics to better inform situational awareness1222

and emergency response decision-making.1223

Our future work will continue to improve the OpenSafe Fusion framework1224

and its components. A prototype OpenSafe Fusion web tool is currently be-1225

ing tested for usability following the tenets of user-centered design [11]. Once1226

deployed, OpenSafe Fusion will be supported by extensive data collection,1227

processing, and archiving workflows to develop a rich dataset of sensor ob-1228

servations. While a wealth of literature exists on data fusion [96, 97], it1229
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predominantly deals with physical sensors or sensors with known or station-1230

ary characteristics. OpenSafe Fusion, in contrast, employs sensors whose1231

characteristics are non-stationary, frequently unknown, and affected by var-1232

ious complex variables, such as location, socioeconomic and environmental1233

factors. The gathered dataset will help characterize data sources accurately,1234

evaluate and enhance data processing workflows, and facilitate the develop-1235

ment of data fusion models that can capture the complex interdependencies1236

among the data sources. Further, each component of OpenSafe Fusion can1237

be improved. Additional sources, such as data from connected cars and1238

the Internet of Things, could be considered. Similarly, improved data pro-1239

cessing workflow will be developed and tested. For example, Panakkal et1240

al. [73] report the development and performance of OpenSafe Mobility. Ad-1241

ditional data labeling and model development are underway to accurately1242

and precisely extract roadway status from text data (e.g., tweets) and esti-1243

mate flood depth from traffic camera images. While the current version of1244

OpenSafe Fusion offers the probability of road link flooding, future versions1245

should offer flood hazard (depth and velocity) and vehicle-specific stability1246

at the road links, leveraging data from relevant sources (as outlined in Ta-1247

ble 1). Further, opportunities exist to improve the data augmentation model1248

to consider short- and long-range spatial correlation in flooding and roadway1249

status. Historical or simulated flood or road condition data will be used to de-1250

velop spatial correlation models to support data augmentation. Better data1251

augmentation models can improve data availability in data-scarce regions,1252

detect outdated data, and provide a check against malicious or misinformed1253

data from social sensors when combined with the human-in-the-loop strategy.1254

Likewise, while human-in-the-loop strategy offers potential benefits such as1255

enabling human supervision, enhancing transparency, contestability, and user1256

trust, concerns arise regarding its practicality and usability in high-pressure1257

emergency response situations with limited resources. Extensive validation1258

studies, testing, and refinement might be required to operationalize an ef-1259

fective human-in-the-loop workflow. Finally, the performance of OpenSafe1260

Fusion will be reviewed after major storm events, and the insights gathered1261

will be used to improve the framework and its components further.1262

In summary, this paper addresses the need for reliable real-time mobility-1263

centric situational awareness data—a long-standing problem with societal1264

significance. The proposed framework offers tools and methods to sense flood1265

impacts at the link- and network levels. The OpenSafe Fusion architecture is1266

simple, practical, and modular, allowing communities to reuse existing data1267
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sources to improve situational awareness and upgrade the framework when1268

more data or better models become available. While extensive additional1269

validation studies are required, OpenSafe Fusion offers communities a po-1270

tential pathway to improved situational awareness—a vital contribution to1271

community resilience in an epoch of climate-exacerbated flood risk.1272
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